2007 Vol. 9, No. 3 397–400

Highly Regio- and Stereoselective Synthesis of Indene Derivatives via Electrophilic Cyclization

Hai-Peng Bi,[†] Li-Na Guo,[†] Xin-Hua Duan,[†] Fa-Rong Gou,[†] Shu-Hao Huang,[†] Xue-Yuan Liu,[†] and Yong-Min Liang*,[†]

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, P.R. China

liangym@lzu.edu.cn

Received November 2, 2006

ABSTRACT

$$E^1$$
 E^2
 E^2
 E^3
 E^4
 E^4
 E^2
 E^2
 E^3
 E^4
 E^2
 E^3
 E^4
 E^2
 E^3
 E^4
 E^2
 E^3
 E^4
 E^4
 E^5
 E^6
 E^7
 E^7

Indene or naphthalene derivatives are readily prepared in moderate to excellent yields with high regio- and stereoselectivity under very mild reaction conditions by the reaction of acetylenic malonates and ketones with I_2 , ICI, or NIS. The resulting iodides can be further elaborated using palladium-catalyzed coupling reactions.

The electrophilic cyclization of heteroatomic nucleophiles such as oxygen, nitrogen, sulfur, and phosphor with tethered alkynes has proven to be an effective method of preparing a large variety of heterocyclic ring systems.^{1–8} Important heterocycles such as furans,¹ pyrroles,² thiophenes,³ indoles,⁴

phosphaisocoumarins,⁵ benzo[*b*]furans,⁶ benzo[*b*]thiophenes,⁷ and others⁸ have been accessed using this protocol. However, only limited reports concerning electrophilic cyclization of carbon nucleophiles have been presented in the literature. In 1993, Taguchi reported an electrophilic cyclization of 4-alkynylmalonate derivatives, but the use of Ti(O*t*-Bu)₄ was required for the reaction to proceed.⁹

[†] Lanzhou University.

[‡] Lanzhou Institute of Chemical Physics.

^{(1) (}a) Bew, S. P.; Knight, D. W. J. Chem. Soc., Chem. Commun. 1996, 1007. (b) El-Taeb, G. M. M.; Evans, A. B.; Knight, D. W.; Jones, S. Tetrahedron Lett. 2001, 42, 5945. (c) Sniady, A.; Wheeler, K. A.; Dembinski, R. Org. Lett. 2005, 7, 1769. (d) Liu, Y.-H.; Song, F.-J.; Cong, L. Q. J. Org. Chem. 2005, 70, 6999.

^{(2) (}a) Knight, D. W.; Redfern, A. L.; Gilmore, J. J. Chem. Soc., Perkin Trans. I 2001, 2874. (b) Knight, D. W.; Redfern, A. L.; Gilmore, J. J. Chem. Soc., Perkin Trans. I 2002, 622.

^{(3) (}a) Ren, X.-F.; Turos, E.; Lake, C. H.; Churchill, M. R. *J. Org. Chem.* **1995**, *60*, 6468. (b) Ren, X.-F.; Konaklieva, M. I.; Shi, H.; Dickey, S.; Lim, D. V.; Gonzalez, J.; Turos, E. *J. Org. Chem.* **1998**, *63*, 8898. (c) Flynn, B. L.; Flynn, G. P.; Hamel, E.; Jung, M. K. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 2341

^{(4) (}a) ten Hoedt, R. W. M.; Koten, G. V.; Noltes, J. G. Synth. Commun. 1977, 7, 61. (b) Barluenga, J.; Trincado, M.; Rubio, E.; Gonzalez, J. M. Angew. Chem., Int. Ed. 2003, 42, 2406. (c) Yue, D.; Larock, R. C. Org. Lett. 2004, 6, 1037. (d) Amjad, M.; Knight, D. W. Tetrahedron Lett. 2004, 45, 539.

^{(5) (}a) Peng, A. Y.; Ding, Y. X. Org. Lett. **2004**, 6, 1119. (b) Peng, A. Y.; Ding, Y. X. Tetrahedron **2005**, 61, 10303.

^{(6) (}a) Banwell, M. G.; Flynn, B. L.; Wills, A. C.; Hamel, E. *Aust. J. Chem.* **1999**, *52*, 767. (b) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L. *Synlett* **1999**, 1432. (c) Yue, D.; Yao, T.; Larock, R. C. *J. Org. Chem.* **2005**, *70*, 10292.

^{(7) (}a) Flynn, B. L.; Verdier-Pinard, P.; Hamel, E. *Org. Lett.* **2001**, *3*, 651. (b) Yue, D.; Larock, R. C. *J. Org. Chem.* **2002**, *67*, 1905. (c) Hessian, K. O.; Flynn, B. L. *Org. Lett.* **2003**, *5*, 4377.

^{(8) (}a) Djuardi, E.; McNelis, E. Tetrahedron Lett. 1999, 40, 7193. (b) Bellina, F.; Biagetti, M.; Carpita, A.; Rossi, R. Tetrahedron 2001, 57, 2857. (c) Arcadi, A.; Cacchi, S.; Giuseppe, S. D.; Fabrizi, G.; Marinelli, F. Org. Lett. 2002, 4, 2409. (d) Huang, Q.; Hunter, J. A.; Larock, R. C. J. Org. Chem. 2002, 67, 3437. (e) Yao, T.; Larock, R. C. J. Org. Chem. 2003, 68, 5936. (f) Yao, T.; Campo, M. A.; Larock, R. C. Org. Lett. 2004, 6, 2677. (g) Yue, D.; Della, Ca, N.; Larock, R. C. Org. Lett. 2004, 6, 1581. (h) Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 1432. (i) Barluenga, J.; Trincado, M.; Marco-Arias, M.; Ballesteros, A.; Rubio, E.; Gonzalez, J. M. Chem. Commun. 2005, 2008.

⁽⁹⁾ Kitagawa, O.; Inoue, T.; Hirano, K.; Taguchi, T. J. Org. Chem. 1993, 3106

Our continuing interest was in the synthesis of indene derivatives by carboannulation. ¹⁰ This work prompted us to examine possible synthesis of indene derivatives by the electrophilic cyclization. Herein, we wish to report a successful electrophilic cyclization of acetylenic malonates and ketones for the synthesis of indene derivatives with high regio- and stereoselectivity (Scheme 1). The observed

Scheme 1
$$E^{2} \xrightarrow{E^{+}} E^{+} \xrightarrow{E^{+}} R$$

selectivity is rare in electrophilic cyclization reactions.

Our initial study began with the reaction of dimethyl 2-(2-(2-phenylethynyl)benzyl)malonate (1a, 0.30 mmol), 2.0 equiv of t-BuOK, and 2.0 equiv of I_2 in THF at room temperature under argon for 20 min. The desired product (E)-dimethyl 1-(iodo(phenyl)methylene)-1H-indene-2,2(3H)-dicarboxylate (2a) was isolated in 93% yield with high regioand stereoselectivity (Table 1, entry 1). NaOEt and K_2CO_3

Table 1. Optimization of the Electrophilic Cyclization of Dimethyl 2-(2-(2-Phenylethynyl)benzyl)malonate^a

$$\begin{array}{c} \text{CO}_2\text{Me} \\ \text{CO}_2\text{Me} \\ \text{base, solvent, rt} \\ \text{Ph} \end{array} + \begin{array}{c} \text{CO}_2\text{Me} \\ \text{CO}_2\text{Me} \\ \text{Ph} \\ \text{Ph} \end{array}$$

entry	base	solvent	time (min)	isolated yield (%)	ratio 2a/3a ^b
1	$t ext{-BuOK}$	THF	20	93	>99:1
2	NaOEt	THF	30	90	>99:1
3	K_2CO_3	THF	60	\mathbf{nr}^c	
4	$t ext{-BuOK}$	$\mathrm{CH_2Cl_2}$	45	45	>99:1
5	$t ext{-BuOK}$	MeOH	40	40	>99:1
6	$t ext{-BuOK}$	$\mathrm{CH_{3}CN}$	45	53	>99:1

 a All reactions were run under the following conditions, unless otherwise indicated: 0.30 mmol of **1a**, 2.0 equiv of I₂, and 2.0 equiv of base in 3 mL of solvent were stirred at room temperature under argon for the specified period of time. b The ratio was determined by 1 H NMR analysis of the product. c nr = no reaction.

were also investigated as bases. NaOEt provided a slightly lower yield and longer reaction time than *t*-BuOK (entry 2); K₂CO₃ proved to be ineffective (entry 3). Other solvents such as CH₂Cl₂, MeOH, and CH₃CN were less effective (entries 4–6). The optimum reaction conditions thus far developed employ 1.0 equiv of **1a**, 2.0 equiv of *t*-BuOK, and 2.0 equiv of electrophile in THF at room temperature under argon.

To explore the scope of this electrophilic cyclization strategy, the reactions of $\mathbf{1a}$ with different electrophiles (I₂, ICl, and NIS) have been studied under the above optimized conditions. When using I₂, ICl, and NIS as the electrophilic reagents, only five-membered ring products have been obtained in excellent yields (Table 2, entries 1-3).

Table 2. Electrophilic Cyclization of Acetylenic Malonates and Ketones^a

	•		2	3	
entry	substrate	time (min)	product	isolated yield (%)	ratio of 2/3 ^b
1	CO ₂ Me CO ₂ Me Ph	20	2a	93	>99:1
2	1a 1a	20	$2a^c$	89	>99:1
2	1a	30	$2\mathbf{a}^d$	91	>99:1
4	CO ₂ Et Ph	35	2b	90	>99:1
5	CO ₂ Et n-C ₅ H ₁₁	30	2c	88	>99:1
6	1c CO ₂ Et OTHP 1d	30	mixture		
7	CO ₂ Et CO ₂ Et	60	3e	63	<1:99
8	COME CO ₂ Me Ph	25	2f	63	
			3f	24	
9	COMe COMe Ph	35	3g	90	<1:99

 a All reactions were run under the following conditions, unless otherwise indicated: 0.30 mmol of 1, 2.0 equiv of I_2 , and 2.0 equiv of t-BuOK in 3 mL of THF were stirred at room temperature under argon for the specified period of time. b The ratio was determined by 1 H NMR analysis of the product. c The reaction was carried out using 2.0 equiv of ICl. d The reaction was carried out using 2.0 equiv of NIS.

Similarly, diethyl 2-(2-(2-phenylethynyl)benzyl)malonate (**1b**) gave the corresponding indene **2b** in good yield (entry 4). The reactions of diethyl malonate alkynes containing different R groups at the end of the triple bond have also been investigated. Diethyl 2-(2-(hept-1-ynyl)benzyl)malonate (**1c**) was employed in the reaction, and only the corresponding five-membered ring product was isolated in high yield (entry 5). Under similar conditions, diethyl 2-(2-(3-(tetrahydro-2*H*-pyran-2-yloxy)prop-1- ynyl)benzyl)malonate (**1d**) produced a complex mixture of unidentified products (entry

398 Org. Lett., Vol. 9, No. 3, 2007

^{(10) (}a) Guo, L. N.; Duan, X. H.; Bi, H. P.; Liu, X. Y.; Liang, Y. M. J. Org. Chem. **2006**, 71, 3325. (b) Duan, X. H.; Guo, L. N.; Bi, H. P.; Liu, X. Y.; Liang, Y. M. Org. Lett. **2006**, 8, 3053.

6). However, diethyl 2-(2-(4-chlorophenyl)ethynyl)benzyl)malonate (**1e**) afforded exclusively the six-membered ring product **3e** (entry 7). We believe that the resonance and electronic effect force the carbon of the malonate group closer to C-1 or C-2 of the acetylenic malonates, resulting in five- or six-membered ring formation (Figure 1).^{6c}

Figure 1. Methylene, chloric and enolization effect on the triple bond.

Meanwhile, acetylenes with different electron-withdrawing groups, such as methyl 2-(2-(2-phenylethynyl)benzyl)-3-oxobutanoate (**1f**), have also been used as substrate and afforded a mixture of five- and six-membered ring products. The five-membered ring product predominated (entry 8). Surprisingly, 3-(2-(2-phenylethynyl)benzyl)pentane-2,4-dione (**1g**) provided the six-membered ring product dimethyl 4-iodo-3-phenylnaphthalene-2,2(1*H*)-dicarboxylate (**3g**) as the sole product (entry 9). We think that six-membered ring formation is due to the enolization and resonance effect (Figure 1).

The molecular structure of the representative product **2a** was determined by X-ray crystallography (Figure 2).¹¹

Interestingly, the reaction of substituted acetylene 1h, which has an oxygen function at the terminal position, proceeded smoothly to give tricyclic lactone 2h as the sole product in a short time (Table 3, entry 1). Lactonization in the reaction of 1h must have occurred after electrophilic cyclization because in the absence of I_2 the lactone was not formed when 1h was treated with t-BuOK. The reactions of 1h with various electrophiles (ICl and NIS) have also been studied. Good yields of the expected product 2h have been obtained, respectively (entries 2 and 3). Closely, substituted

Figure 2. Structure of 2a.

Table 3. Electrophilic Cyclization of Acetylenic Malonates^a

$$CO_2Et$$
 CO_2Et
 CO_2E
 CO_2Et
 CO

entry	Substrate (R ¹ , R ²)	time (min)	product	isolated yield (%)
1	1h (H, H)	30	2h	85
2	1h	20	$2h^b$	80
3	1h	30	$2h^c$	82
4	1i (Me, H)	30	2i	56
5	1j (Ph, H)	20	2 j	55
6	1k (<i>p</i> -Tol, H)	40	2k	59
7	11 (furyl, H)	35	21	61
8	1m (Me, Me)	30	2m	52

 $[^]a$ All reactions were carried out under the optimal conditions reported in the text. b The reaction was carried out using 2.0 equiv of ICl. c The reaction was carried out using 2.0 equiv of NIS

secondary alcohol **1i** led to desired product **2i** in 56% yield (entry 4). Substituted secondary alcohols **1j** and **1k**, having phenyl or *p*-tolyl substituents, produced 55% and 59% yields of the tricyclic lactones, respectively (entries 5 and 6). Similarly, diethyl 2-(2-(3-(furan-2-yl)-3-hydroxyprop1-ynyl)benzyl)malonate (**1l**) led to desired product **2l** in 61% yield (entry 7). Fortunately, propargylic tertiary alcohol **1m** also gave the corresponding tricyclic product **2m** (entry 8).

We propose the following mechanism for this electrophilic cyclization (Scheme 2). First, the carbon—carbon triple bond of acetylenic malonates and ketones coordinates to the iodine cation generated from I_2 to generate an iodonium intermedi-

Org. Lett., Vol. 9, No. 3, 2007

⁽¹¹⁾ X-ray data for compound **2a**: $C_{20}H_{17}IO_4$, MW = 448.24, T=298-(2) K, $\lambda=0.71073$ Å, monoclinic space group, P-1, a=7.615(16) Å, b=9.91(2) Å, c=12.33(2) Å, $\alpha=98.11(2)^\circ$, $\beta=96.80(2)^\circ$, $\gamma=96.61(3)^\circ$, V=906(3) Å 3 , Z=2, $D_c=1.642$ mg/m 3 , $\mu=1.787$ mm $^{-1}$, F(000)=444, crystal size $0.50\times0.45\times0.38$ mm 3 , independent reflections 3045 [R (int) = 0.0485], reflections collected 4244, refinement method, full-matrix least-squares on F^2 , goodness-of-fit on F^2 1.008, final R indices [$I>2\sigma-(I)$] $R_1=0.0789$, $wR_2=0.1902$, R indices (all date) $R_1=0.0992$, $wR_2=0.2136$, largest diff. peak and hole 1.840 and -2.845 e Å $^{-3}$

Scheme 2

ate. This is followed by attack of the carbanion on the activated triple bond to afford the cyclized products.

A standard feature of this process is the fact that the indene derivatives produced by iodocyclization can be further elaborated by using various palladium-catalyzed processes. For example, the Sonagashira coupling¹² of tricyclic lactone **2h** afforded the corresponding product **4h** in 82% yield (Scheme 3).

In conclusion, an efficient, highly regio- and stereoselective synthesis of indene derivatives from acetylenic ketones and malonates by carbon nucleophiles through electro-

philic cyclization under very mild reaction conditions has been developed. The resulting iodine-containing products are readily elaborated to more complex products by using known organopalladium chemistry. Further studies into the scope and limitations of the carboannulation reaction are underway.

Acknowledgment. We thank the NSF (NSF-20021001, NSF-20672049) and the "Hundred Scientist Program" from the Chinese Academy of Sciences for financial support.

Supporting Information Available: Typical experimental procedure and characterization for all products, and X-ray data of **2a** in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

OL062683E

400 Org. Lett., Vol. 9, No. 3, 2007

⁽¹²⁾ For reviews, see: (a) Campbell, I. B. *The Sonogashira Cu-Pd-Catalyzed Alkyne Coupling Reaction. Organocopper Reagents*; Taylor, R. J. K., Ed.; IRL Press: Oxford, U.K., 1994; pp 217–235. (b) Sonogashira, K.; Takahashi, S. *Yuki Gosei Kagaku Kyokaishi* **1993**, *51*, 1053. (c) Sonogashira, K. In *Comprehensive Organic Synthesis*; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 3, pp 521–549.